Dremio’s Data Lake Engine Enables Breakthrough Speed for Analytics

By on

According to a new press release, “Dremio, the data lake engine company, announced today the release of its Data Lake Engines for AWS, Azure, and Hybrid Cloud. This version of Dremio’s open source platform includes advanced columnar caching, predictive pipelining, and a new execution engine kernel delivering up to 70x increases in performance. ‘We process hundreds of thousands of transactions on a daily basis and produce insights based on those transactions; this type of capability requires sophisticated and scalable data platforms,’ said Ivan Alvarez, IT vice president, big data and analytics, NCR Corporation. ‘Dremio is working with NCR to solve the integration between traditional enterprise data warehouse and scalable distributed compute platforms for big data repositories. This integration allows NCR to also cross pollinate data engineering knowledge among platforms and most importantly to deliver faster data insights to our internal and external customers’.”

The release continues, “With Dremio, companies can operationalize data lake storage such as ADLS and S3, making data easy to consume while providing the interactive performance that users demand. The engine provides ANSI SQL capabilities, including complex joins, large aggregations, common table expressions, sub-selects, window functions and statistical functions. With built-in Dremio connectors for Tableau, Power BI, Looker and other analysis tools, as well as Dremio’s ODBC, JDBC, REST and Arrow Flight interfaces, it is easy to use any client application to query the data. Dremio executes queries directly against data lake storage while leveraging patent-pending technology to accelerate query execution. The data does not need to be loaded into other systems, such as data warehouses, data marts, cubes, aggregation tables and BI extracts. Data can reside in a variety of file formats, including Parquet, ORC, JSON and text-delimited (e.g., CSV).”

Read more at Business Wire.

Image used under license from Shutterstock.com

We use technologies such as cookies to understand how you use our site and to provide a better user experience. This includes personalizing content, using analytics and improving site operations. We may share your information about your use of our site with third parties in accordance with our Privacy Policy. You can change your cookie settings as described here at any time, but parts of our site may not function correctly without them. By continuing to use our site, you agree that we can save cookies on your device, unless you have disabled cookies.
I Accept