NVIDIA Accelerates Apache Spark, World’s Leading Data Analytics Platform

By on

According to a recent press release, “NVIDIA today announced that it is collaborating with the open-source community to bring end-to-end GPU acceleration to Apache Spark 3.0, an analytics engine for big data processing used by more than 500,000 data scientists worldwide. With the anticipated late spring release of Spark 3.0, data scientists and machine learning engineers will for the first time be able to apply revolutionary GPU acceleration to the ETL (extract, transform and load) data processing workloads widely conducted using SQL database operations. In another first, AI model training will be able to be processed on the same Spark cluster, instead of running the workloads as separate processes on separate infrastructure. This enables high-performance data analytics across the entire data science pipeline, accelerating tens to thousands of terabytes of data from data lake to model training, without changes to existing code used for Spark applications running on premises and in the cloud.”

The release continues, “Building on its strategic AI partnership with NVIDIA, Adobe is one of the first companies working with a preview release of Spark 3.0 running on Databricks. It has achieved a 7x performance improvement and 90 percent cost savings in an initial test, using GPU-accelerated data analytics for product development in Adobe Experience Cloud and supporting features that power digital businesses. The performance gains in Spark 3.0 enhance model accuracy by enabling scientists to train models with larger datasets and retrain models more frequently. This makes it possible to process terabytes of new data every day, which is critical for data scientists supporting online recommender systems or analyzing new research data. In addition, faster processing means that fewer hardware resources are needed to deliver results, providing significant cost savings.”

Read more at Globe Newswire.

Image used under license from Shutterstock.com

We use technologies such as cookies to understand how you use our site and to provide a better user experience. This includes personalizing content, using analytics and improving site operations. We may share your information about your use of our site with third parties in accordance with our Privacy Policy. You can change your cookie settings as described here at any time, but parts of our site may not function correctly without them. By continuing to use our site, you agree that we can save cookies on your device, unless you have disabled cookies.
I Accept