Vapor IO Empowers the Autonomous Edge with Synse 3.0

By on

A recent press release reports, “Vapor IO, creators of the Kinetic Edge™ platform, the first nationwide platform for edge colocation, networking and exchange services, today announced Synse 3.0, the next generation of its open source API for making environmental data actionable within the network and data center. The developers of Synse 3.0 rebuilt portions of the code, making it massively scalable and adaptable, and now includes the 2.0 version of the SDK, making it extremely easy for third parties to build drivers that integrate new types of equipment and sensors. ‘As thousands of geographically distributed, lights-out data centers emerge at the edge, we have no choice but to make our infrastructure and applications autonomous,’ said Cole Crawford, founder and CEO of Vapor IO. ‘Without the IT/OT convergence enabled by Synse, you don’t have enough context to properly automate edge environments. Synse 3.0 provides an open source mechanism for exposing critical environmental information that impacts servers and workloads, further empowering the autonomous edge’.”

The release goes on, “In traditional data centers, the IT (information technology) and OT (operational technology) rarely converge. The teams responsible for managing the servers and applications seldom have access to the OT performance data, which makes it difficult or impossible for them to make fully-informed decisions about resilience and workload optimization. For example, it’s much harder to diagnose or predict the failure of a hard drive without combining the drive’s performance over time with information from the surrounding facilities environment, such fluctuations in the HVAC system or air pressure at the server backplane.”

Read more at Business Wire.

Image used under license from Shutterstock.com

Leave a Reply

We use technologies such as cookies to understand how you use our site and to provide a better user experience. This includes personalizing content, using analytics and improving site operations. We may share your information about your use of our site with third parties in accordance with our Privacy Policy. You can change your cookie settings as described here at any time, but parts of our site may not function correctly without them. By continuing to use our site, you agree that we can save cookies on your device, unless you have disabled cookies.
I Accept