Why Just Collecting More and More Data Is No Longer Productive

By on
Read more about author Deepak Gupta.

A decade back, when the big data trend began, the mantra was to collect more and more data — then glean insights from it to better understand consumer behavior, market trends, and demand. Even today, big data is key to better decision-making and operational excellence; however, two phenomena challenge the notion of “collect as much data as possible”: data privacy and regulations.

The enforcement of major data regulations — such as GDPR and CCPA — has meant that data collection, processing, and management attract additional compliance costs, in addition to securing the data from insider threats and cybercriminals. Moreover, more and more jurisdictions are only introducing new regulatory frameworks to protect consumer data, limiting enterprises what data they can collect and where they can store it.

On the other hand, average consumers are paying more attention to and are conscious of their online privacy, in addition to being selective about what enterprises they interact and share information with.

While enterprises have technology solutions at their disposal to collect data about every consumer interaction on their apps and digital ecosystems, today’s data privacy concerns and regulatory landscape require enterprises to rethink:

  • How much data to collect
  • How to process and store the data
  • Implementing a comprehensive compliance strategy that incorporates the scope of multiple data regulations
  • Enforcing a consumer-friendly privacy policy that goes beyond data regulations to address the concerns and meet the needs of consumers

In essence, information security and data privacy are two different aspects — however, a few aspects of security and privacy are interdependent on one another. For example, data breaches almost always affect consumer privacy governance inside an enterprise.

In this paradigm shift, simply collecting and storing more and more data can increase costs exponentially without justifying the positive impact on enterprise profitability, growth, and sustainability. The strategic thinking and decision-making around data management should essentially be turned around. That is, rather than collecting data at first and later embedding it into analytics, decision-making, and research and development, enterprises should map their goals and opportunities first and then collect the data needed to achieve the goals and pursue opportunities. In analogy, this is more like building a reliable combustion engine and then focusing on extracting oil more efficiently, rather than extracting oil first and then focusing on where it can be consumed.

Leave a Reply

We use technologies such as cookies to understand how you use our site and to provide a better user experience. This includes personalizing content, using analytics and improving site operations. We may share your information about your use of our site with third parties in accordance with our Privacy Policy. You can change your cookie settings as described here at any time, but parts of our site may not function correctly without them. By continuing to use our site, you agree that we can save cookies on your device, unless you have disabled cookies.
I Accept