Fluree Demo: The Great Escape – Liberating 20+ Years of Legacy Data into Knowledge Graphs and Semantics with AI 

By on

Download the slides here>>

Most large enterprises struggle to adopt knowledge graphs and semantic models given years of investments in legacy mainframe, relational database and data warehousing technologies.  Because legacy data has been created and retained in source application schemas with zero semantic structure, the cost and complexity to convert to a universal-semantic data model is prohibitive, often hindering knowledge graph projects. How do you untrap 20+ years and petabytes of data and activate it to leverage the benefits of semantics and Knowledge Graphs?  

Join us in this working session where we will walk through (1) advances in data formats, such as JSON Linked Data (JSON-LD), that make conversion of flat, relational data into serialized RDF viable at scale; and (2) advances in machine learning and AI in data classification to automate the linking of semantics to flat, structured data.  By the end of this session, we will have walked through a scenario using Fluree Sense to integrate legacy data from multiple traditional data stores onto a Knowledge Graph.