What is Data Integration?

By on

Data IntegrationData Integration refers to actions taken in creating consistent, quality, and usable data from one or more diverse data sets.

As technologies become more complex and change over time, data variety and volume grow exponentially and the speed of data transfer becomes ever shorter. Data Integration has and will continue to become more critical to get meaningful results. Different approaches, tools, and solutions fall under the umbrella of Data Integration.

One well-known strategy is Extract, Transform, and Load (ETL). In the end, data is ideally consolidated consistently with Data Integration, either in a physical or virtual form. The business context, the practices, and how Data Integration is executed all factor into its success.

Other Definitions of Data Integration Include:

  • “A process of connecting to data sources, integrating data from various data sources, improving Data Quality, aggregating it and then storing it in staging data source or Data Marts or Data Warehouses for consumption of various business applications.” (Gartner IT Glossary)
  • “Data shaped so that it is in the correct format with the correct piece of information to make sense.” (Ibrahim Surani, DATAVERSITY®)
  • “Combining seemingly unlike sets of data into a searchable repository for new types if business queries.” (Mary Shacklett, TechRepublic).
  • The process of bringing all of the data together from disparate sources and into one centralized view (Leah Pope, Forbes Communications Council)

Data Integration Use Cases Include:

  • Data lake
  • Cloud migration
  • Database Transaction Streaming: Allowing for filters and searches of historical data as real-time data streams into a system.
  • Data Extraction and Loading from Production Sources. Loading revenue, supply or other operational data from systems like SAP or Oracle to mix with social media and clickstream for better analysis.

Consider using a Data Integration tool but choose carefully based on core business activities.

Businesses Use Data Integration to:

  • Move data efficiently.
  • Manage complexity and costs to do business with valuable data.
  • Reduce potential support and staffing cost.

Image used under license from Shutterstock.com

We use technologies such as cookies to understand how you use our site and to provide a better user experience. This includes personalizing content, using analytics and improving site operations. We may share your information about your use of our site with third parties in accordance with our Privacy Policy. You can change your cookie settings as described here at any time, but parts of our site may not function correctly without them. By continuing to use our site, you agree that we can save cookies on your device, unless you have disabled cookies.
I Accept